Data mining for evolution of association rules for droughts and floods in India using climate inputs
نویسندگان
چکیده
[1] An accurate prediction of extreme rainfall events can significantly aid in policy making and also in designing an effective risk management system. Frequent occurrences of droughts and floods in the past have severely affected the Indian economy, which depends primarily on agriculture. Data mining is a powerful new technology which helps in extracting hidden predictive information (future trends and behaviors) from large databases and thus allowing decision makers to make proactive knowledge-driven decisions. In this study, a data-mining algorithm making use of the concepts of minimal occurrences with constraints and time lags is used to discover association rules between extreme rainfall events and climatic indices. The algorithm considers only the extreme events as the target episodes (consequents) by separating these from the normal episodes, which are quite frequent, and finds the time-lagged relationships with the climatic indices, which are treated as the antecedents. Association rules are generated for all the five homogenous regions of India and also for All India by making use of the data from 1960 to 1982. The analysis of the rules shows that strong relationships exist between the climatic indices chosen, i.e., Darwin sea level pressure, North Atlantic Oscillation, Nino 3.4 and sea surface temperature values, and the extreme rainfall events. Validation of the rules using data for the period 1983–2005 clearly shows that most of the rules are repeating, and for some rules, even if they are not exactly the same, the combinations of the indices mentioned in these rules are the same during validation period, with slight variations in the classes taken by the indices.
منابع مشابه
A new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملIdentifying and Evaluating Effective Factors in Green Supplier Selection using Association Rules Analysis
Nowadays companies measure suppliers on the basis of a variety of factors and criteria that affect the supplier's selection issue. This paper intended to identify the key effective criteria for selection of green suppliers through an efficient algorithm callediterative process mining or i-PM. Green data were collected first by reviewing the previous studies to identify various environmental cri...
متن کاملUsing a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)
In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...
متن کاملApplying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures
Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...
متن کاملIntroducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009